If $$\frac{{b - c}}{a}$$ + $$\frac{{a + c}}{b}$$ + $$\frac{{a - b}}{c}$$ = 1 and a - b + c ≠ 0 then which one of the following relations is true ?
A. $$\frac{1}{c} = \frac{1}{a} + \frac{1}{b}$$
B. $$\frac{1}{a} = \frac{1}{b} + \frac{1}{c}$$
C. $$\frac{1}{b} = \frac{1}{a} - \frac{1}{c}$$
D. $$\frac{1}{b} = \frac{1}{a} + \frac{1}{c}$$
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{
& \frac{{b - c}}{a}{\text{ + }}\frac{{a + c}}{b}{\text{ + }}\frac{{a - b}}{c} = 1 \cr
& a - b + c \ne 0 \cr
& {\text{Let }}b = c \cr
& \therefore \frac{{b - b}}{a}{\text{ + }}\frac{{a + b}}{b}{\text{ + }}\frac{{a - b}}{b} = 1 \cr
& \Rightarrow 0 + \frac{a}{b} + 1 + \frac{a}{b} - 1 = 1 \cr
& \Rightarrow \frac{a}{b} + \frac{a}{b} = 1 \cr
& \Rightarrow \frac{1}{b} + \frac{1}{b} = \frac{1}{a} \cr
& {\text{We take }}b = c \cr
& \therefore \boxed{\frac{1}{b} + \frac{1}{c} = \frac{1}{a}} \cr} $$
Join The Discussion