If $$\frac{{{\text{ }}{x^2} + 1}}{{{x^2}}} = 2{\text{,}}$$ then the value of $$\frac{{x - 1}}{x}$$ is?
A. -2
B. 0
C. 1
D. -1
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & {x^2} + \frac{{{\text{ }}1}}{{{x^2}}} = 2 \cr & \Rightarrow {\left( {x - \frac{1}{x}} \right)^2} + 2.x.\frac{1}{x} = 2 \cr & \Rightarrow x - \frac{1}{x} = 2 - 2 \cr & \Rightarrow x - \frac{1}{x} = 0 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion