If f(x) and g(x) are two probability density functions,
\[{\text{f}}\left( {\text{x}} \right) = \left\{ {\begin{array}{*{20}{c}}
{\frac{{\text{x}}}{{\text{a}}} + 1}&:&{ - {\text{a}} \leqslant {\text{x}} < 0} \\
{ - \frac{{\text{x}}}{{\text{a}}} + 1}&:&{0 \leqslant {\text{x}} \leqslant {\text{a}}} \\
0&:&{{\text{otherwise}}}
\end{array}} \right.;\,\,{\text{g}}\left( {\text{x}} \right) = \left\{ {\begin{array}{*{20}{c}}
{ - \frac{{\text{x}}}{{\text{a}}}}&:&{ - {\text{a}} \leqslant {\text{x}} < 0} \\
{\frac{{\text{x}}}{{\text{a}}}}&:&{0 \leqslant {\text{x}} \leqslant {\text{a}}} \\
0&:&{{\text{otherwise}}}
\end{array}} \right.\]
Which one of the following statements is true?
A. Mean of f(x) and g(x) are same; Variance of f(x) and g(x) are same
B. Mean of f(x) and g(x) are same; Variance of f(x) and g(x) are different
C. Mean of f(x) and g(x) are different; Variance of f(x) and g(x) are same
D. Mean of f(x) and g(x) are different; Variance of f(x) and g(x) are different
Answer: Option B
Related Questions on Probability and Statistics
A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?
A. $$\frac{1}{4}$$
B. $$\frac{3}{8}$$
C. $$\frac{1}{2}$$
D. $$\frac{3}{4}$$
A. 1 and $$\frac{1}{3}$$
B. $$\frac{1}{3}$$ and 1
C. 1 and $$\frac{4}{3}$$
D. $$\frac{1}{3}$$ and $$\frac{4}{3}$$
A. E(XY) = E(X) E(Y)
B. Cov (X, Y) = 0
C. Var (X + Y) = Var (X) + Var (Y)
D. E(X2Y2) = (E(X))2 (E(Y))2

Join The Discussion