If in a triangle ABC, BE and CF are two medians perpendicular to each other and if AB = 19 cm and AC = 22 cm then the length of BC is
A. 20.5 cm
B. 19.5 cm
C. 26 cm
D. 13 cm
Answer: Option D
Solution (By Examveda Team)
Given
AB = 19 cm, AC = 22 cm,
∵ BE ⊥ CF (Given), [Medians CF & BE are perpendicular to each other]
In this case
We know,
AB2 + AC2 = 5(BC)2
⇒ (19)2 + (22)2 = 5(BC)2
⇒ 361 + 484 = 5(BC)2
⇒ 845 = 5(BC)2
⇒ (BC)2 = 169
⇒ BC = 13 cm
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion