Examveda

If $${\left( {a + \frac{1}{a}} \right)^2} = 3{\text{,}}$$    the value of $${a^3} + \frac{1}{{{a^3}}}$$   = ?

A. 0

B. $$3\left( {a + \frac{1}{a}} \right)$$

C. $$3\left( {{a^2} + \frac{1}{{{a^2}}}} \right)$$

D. 1

Answer: Option A

Solution (By Examveda Team)

$$\eqalign{ & {\left( {a + \frac{1}{a}} \right)^2} = 3 \cr & \Rightarrow a + \frac{1}{a} = \sqrt 3 \cr & {\text{Taking cube on both sides}} \cr & \Rightarrow {\text{ }}{a^3} + \frac{1}{{{a^3}}} + 3.a.\frac{1}{a}\left( {a + \frac{1}{a}} \right) = 3\sqrt 3 \cr & \Rightarrow {\text{ }}{a^3} + \frac{1}{{{a^3}}} + 3\left( {\sqrt 3 } \right) = 3\sqrt 3 \cr & \Rightarrow {\text{ }}{a^3} + \frac{1}{{{a^3}}} = 3\sqrt 3 - 3\sqrt 3 \cr & \Rightarrow {a^3} + \frac{1}{{{a^3}}} = 0 \cr} $$

This Question Belongs to Arithmetic Ability >> Algebra

Join The Discussion

Related Questions on Algebra