If $${\left( {a + \frac{1}{a}} \right)^2}\, = 3$$ then $${a^3} + \frac{1}{{{a^3}}} = ?$$
A. $$2\sqrt 3 $$
B. 2
C. $$3\sqrt 3 $$
D. 0
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & {\left( {a + \frac{1}{a}} \right)^2} = 3 \cr & a + \frac{1}{a} = \sqrt 3 \cr & {\text{Take cube on both sides}} \cr & {\left( {a + \frac{1}{a}} \right)^3} = {\left( {\sqrt 3 } \right)^3} \cr & \Rightarrow {a^3} + \frac{1}{{{a^3}}} + 3.a.\frac{1}{a}\left( {a + \frac{1}{a}} \right) = 3\sqrt 3 \cr & \Rightarrow {a^3} + \frac{1}{{{a^3}}} + 3\sqrt 3 = 3\sqrt 3 \cr & \Rightarrow {a^3} + \frac{1}{{{a^3}}} = 0 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion