If p = 999, then the value of $$\root 3 \of {p\left( {{p^2} + 3p + 3} \right) + 1} {\text{ is?}}$$
A. 1000
B. 999
C. 998
D. 1002
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & \because p = 999 \cr & \root 3 \of {p\left( {{p^2} + 3p + 3} \right) + 1} \cr & = \root 3 \of {{p^3} + 3{p^2} + 3p + 1} \cr & = \root 3 \of {{{\left( {p + 1} \right)}^3}} \cr & = \root 3 \of {{{\left( {999 + 1} \right)}^3}} \cr & = \root 3 \of {{{\left( {1000} \right)}^3}} \cr & = 1000 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion