If [p] means the greatest positive integer less than or equal to p, then $$\left[ { - \frac{1}{4}} \right] + \left[ {4 - \frac{1}{4}} \right] + \left[ 3 \right]$$ is equal to?
A. 4
B. 5
C. 6
D. 7
Answer: Option D
Solution (By Examveda Team)
Given [p] means the greatest positive integer less than or [p] equal to p$$\eqalign{ & \Rightarrow \left[ {\text{p}} \right] = {\text{ p}} \cr & \Rightarrow \left[ -{\text{p}} \right] = {\text{ p}} \cr & \Rightarrow \left[ { - \frac{1}{4}} \right]{\text{ + }}\left[ {4 - \frac{1}{4}} \right] + \left[ 3 \right] \cr & \Rightarrow \frac{1}{4} + 4 - \frac{1}{4} + 3 \cr & \Rightarrow 7 \cr} $$
[-P] = P; how thus can be written from given information in the question?
And should be 5
GIF of -1/4 is -1
GIF of 3.75 is 3