If $$\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1$$ and $$\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0$$ where a, b, c, p, q, r are non-zero real numbers, then $$\frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}}$$ is equal to = ?
A. 0
B. 1
C. 3
D. 9
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & \frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0\,\,\,\, \cr & \Rightarrow aqr + bpr + cpq = 0....({\text{i}}) \cr & \frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1\,\, \cr & \Rightarrow {\left( {\frac{p}{a} + \frac{q}{b} + \frac{r}{c}} \right)^2} = 1 \cr & \Rightarrow {\text{ }}\frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}}\, + 2\left( {\frac{{pq}}{{ab}} + \frac{{pr}}{{ac}} + \frac{{qr}}{{bc}}} \right) = 1 \cr & \Rightarrow \frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}} + \frac{{2\left( {pqc + prb + qra} \right)}}{{abc}} = 1 \cr & \Rightarrow \frac{{{p^2}}}{{{a^2}}} + \frac{{{q^2}}}{{{b^2}}} + \frac{{{r^2}}}{{{c^2}}} = 1....\left[ {{\text{using (i)}}} \right] \cr} $$Related Questions on Simplification
A. 20
B. 80
C. 100
D. 200
E. None of these
A. Rs. 3500
B. Rs. 3750
C. Rs. 3840
D. Rs. 3900
E. None of these

Join The Discussion