If $${\left( {\sqrt 5 } \right)^7} \div {\left( {\sqrt 5 } \right)^5} = {{\text{5}}^{\text{P}}}{\text{,}}$$ then the value of P is?
A. 5
B. 2
C. $$\frac{3}{2}$$
D. 1
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & {\left( {\sqrt 5 } \right)^7} \div {\left( {\sqrt 5 } \right)^5}{\text{ = }}{{\text{5}}^{\text{P}}} \cr & \Rightarrow \frac{{{{\left( {\sqrt 5 } \right)}^7}}}{{{{\left( {\sqrt 5 } \right)}^5}}} = {{\text{5}}^{\text{P}}} \cr & \Rightarrow {\left( {\sqrt 5 } \right)^2} = {{\text{5}}^{\text{P}}} \cr & \Rightarrow {{\text{5}}^{\text{1}}} = {\text{ }}{{\text{5}}^{\text{P}}} \cr & \Rightarrow \boxed{{\text{P}} = 1} \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion