Solution (By Examveda Team)
$$\eqalign{
& \sqrt {\left( {{a^2} + {b^2} + ab} \right)} + \sqrt {\left( {{a^2} + {b^2} - ab} \right)} = 1 \cr
& {\text{Squaring both sides}} \cr
& {a^2} + {b^2} + ab + {a^2} + {b^2} - ab + 2\sqrt {{{\left( {{a^2} + {b^2}} \right)}^2} - {{\left( {ab} \right)}^2}} = 1 \cr
& \sqrt {{{\left( {{a^2} + {b^2}} \right)}^2} - {{\left( {ab} \right)}^2}} = \frac{1}{2} - \left( {{a^2} + {b^2}} \right) \cr
& {\text{Again squaring both sides}} \cr
& {a^4} + {b^4} + 2{a^2}{b^2} - {a^2}{b^2} = \frac{1}{4} + {\left( {{a^2} + {b^2}} \right)^2} - \left( {{a^2} + {b^2}} \right) \cr
& {a^4} + {b^4} + {a^2}{b^2} = \frac{1}{4} + {a^4} + {b^4} + 2{a^2}{b^2} - {a^2} - {b^2} \cr
& {a^2} + {b^2} - {a^2}{b^2} = \frac{1}{4}........\left( {\text{i}} \right) \cr
& \Rightarrow \left( {1 - {a^2}} \right)\left( {1 - {b^2}} \right) \cr
& = 1 - {a^2} - {b^2} + {a^2}{b^2} \cr
& = 1 - \left[ {{a^2} + {b^2} - {a^2}{b^2}} \right] \cr
& = 1 - \frac{1}{4} \cr
& = \frac{3}{4} \cr
& \cr
& {\bf{Alternate:}} \cr
& {\text{Let }}b = 0 \cr
& \sqrt {\left( {{a^2} + {b^2} + ab} \right)} + \sqrt {\left( {{a^2} + {b^2} - ab} \right)} = 1 \cr
& \sqrt {{a^2} + 0 + 0} + \sqrt {{a^2} + 0 + 0} = 1 \cr
& a + a = 1 \cr
& 2a = 1 \cr
& a = \frac{1}{2} \cr
& \left( {1 - {a^2}} \right)\left( {1 - {b^2}} \right) \cr
& = \left( {1 - \frac{1}{4}} \right)\left( {1 - 0} \right) \cr
& = \frac{3}{4} \cr} $$
Join The Discussion