If (√2 + √5 - √3) × k = -12, then what will be the value of k?
A. √2 + √5 + √3
B. (√2 + √5 - √3) (2 + √5)
C. (√2 + √5 + √3) (2 - √5)
D. (√2 + √5 + √3) (2 - $$\sqrt {10} $$ )
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & \left( {\sqrt 2 + \sqrt 5 - \sqrt 3 } \right) \times {\text{k}} = - 12 \cr & {\text{In these type of questions, we can go through option}} \cr & {\text{From option D}} \cr & \Rightarrow \left( {\sqrt 2 + \sqrt 5 - \sqrt 3 } \right)\left( {\sqrt 2 + \sqrt 5 + \sqrt 3 } \right)\left( {2 - \sqrt {10} } \right) = - 12 \cr & \Rightarrow \left[ {{{\left( {\sqrt 2 + \sqrt 5 } \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}} \right]\left( {2 - \sqrt {10} } \right) = - 12 \cr & \Rightarrow \left( {2 + 5 + 2\sqrt {10} - 3} \right)\left( {2 - \sqrt {10} } \right) = - 12 \cr & \Rightarrow 2\left( {2 + \sqrt {10} } \right)\left( {2 - \sqrt {10} } \right) = - 12 \cr & \Rightarrow 2\left[ {{{\left( 2 \right)}^2} - {{\left( {\sqrt {10} } \right)}^2}} \right] = - 12 \cr & \Rightarrow 2 \times \left[ { - 6} \right] = - 12 \cr & \Rightarrow - 12 = - 12\,\,\,\,\left( {{\text{Satisfy}}} \right) \cr} $$Related Questions on Surds and Indices
A. $$\frac{1}{2}$$
B. 1
C. 2
D. $$\frac{7}{2}$$
Given that 100.48 = x, 100.70 = y and xz = y2, then the value of z is close to:
A. 1.45
B. 1.88
C. 2.9
D. 3.7

Join The Discussion