If $$x + \frac{1}{x} = 1,$$ then the value of x12 + x9 + x6 + x3 + 1 is:
A. 1
B. -1
C. 0
D. -2
Answer: Option A
Solution (By Examveda Team)
$$x + \frac{1}{x} = 1$$x2 + 1 - x = 0
(x + 1)(x2 + 12 - x) = 0
x3 + 1 = 0
x3 = -1
⇒ x12 + x9 + x6 + x3 + 1
= 1 - 1 + 1 - 1 + 1
= 1
Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion