If $$\left( X \right) = \frac{1}{x} - \frac{1}{{x + 1}},$$ then what is the value of f(1) + f(2) + f(3) + . . . . . + f(10)?
A. $$\frac{9}{{10}}$$
B. $$\frac{{10}}{{11}}$$
C. $$\frac{{11}}{{12}}$$
D. $$\frac{{12}}{{13}}$$
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & f\left( 1 \right) = 1 - \frac{1}{2} \cr & f\left( 2 \right) = \frac{1}{2} - \frac{1}{3} \cr & f\left( 3 \right) = \frac{1}{3} - \frac{1}{4} \cr & f\left( 4 \right) = \frac{1}{4} - \frac{1}{5} \cr & 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4}\,.\,.\,.\,.\,.\,\frac{1}{8} - \frac{1}{9} + \frac{1}{9} - \frac{1}{{10}} + \frac{1}{{10}} - \frac{1}{{11}} \cr & = 1 - \frac{1}{{11}} \cr & = \frac{{10}}{{11}} \cr} $$Related Questions on Surds and Indices
A. $$\frac{1}{2}$$
B. 1
C. 2
D. $$\frac{7}{2}$$
Given that 100.48 = x, 100.70 = y and xz = y2, then the value of z is close to:
A. 1.45
B. 1.88
C. 2.9
D. 3.7

Join The Discussion