If $$x - \frac{1}{x} = 2{\text{,}}$$ then the value of the following is $${x^3} - \frac{1}{{{x^3}}}$$ = ?
A. 2
B. 11
C. 15
D. 14
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & x - \frac{1}{x} = 2{\text{ to find }}{x^3} - \frac{1}{{{x^3}}} \cr & \Rightarrow x - \frac{1}{x} = 2 \cr & \left[ {{\text{Cubing both sides}}} \right] \cr & \Rightarrow {\left( {x - \frac{1}{x}} \right)^3} = {\left( 2 \right)^3} \cr & \Rightarrow {x^3} - \frac{1}{{{x^3}}} - 3 \times x \times \frac{1}{x}\left( {x - \frac{1}{x}} \right) = 8 \cr & \Rightarrow {x^3} - \frac{1}{{{x^3}}} - 3 \times \left( 2 \right) = 8 \cr & \Rightarrow {x^3} - \frac{1}{{{x^3}}} = 14 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion