If $$x - \frac{1}{x} = 5,$$ x ≠ 0, then what is the value of $$\frac{{{x^6} + 3{x^3} - 1}}{{{x^6} - 8{x^3} - 1}}?$$
A. $$\frac{3}{8}$$
B. $$\frac{{13}}{{12}}$$
C. $$\frac{4}{9}$$
D. $$\frac{{11}}{{13}}$$
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & {\text{Given, }}x - \frac{1}{x} = 5 \cr & \Rightarrow {x^3} - \frac{1}{{{x^3}}} = {5^3} + 3 \times 5 = 140 \cr & \frac{{{x^6} + 3{x^3} - 1}}{{{x^6} - 8{x^3} - 1}} \cr & = \frac{{{x^3} + 3 - \frac{1}{{{x^3}}}}}{{{x^3} - 8 - \frac{1}{{{x^3}}}}} \cr & = \frac{{{x^3} - \frac{1}{{{x^3}}} + 3}}{{{x^3} - \frac{1}{{{x^3}}} - 8}} \cr & = \frac{{140 + 3}}{{140 - 8}} \cr & = \frac{{143}}{{132}} \cr & = \frac{{13}}{{12}} \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion