If $$x\left( {3 - \frac{2}{x}} \right) = \frac{3}{x},$$ then the value of $${x^3} - \frac{1}{{{x^3}}}$$ is equal to:
A. $$\frac{8}{{27}}$$
B. $$\frac{{61}}{{27}}$$
C. $$\frac{{62}}{{27}}$$
D. $$\frac{{52}}{{27}}$$
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & x\left( {3 - \frac{2}{x}} \right) = \frac{3}{x} \cr & 3x - 2 = \frac{3}{x} \cr & 3\left( {x - \frac{1}{x}} \right) = 2 \cr & x - \frac{1}{x} = \frac{2}{3} \cr & {x^3} - \frac{1}{{{x^3}}} = {\left( {\frac{2}{3}} \right)^3} + 3 \times \frac{2}{3} \cr & {x^3} - \frac{1}{{{x^3}}} = \frac{8}{{27}} + 2 \cr & {x^3} - \frac{1}{{{x^3}}} = \frac{{62}}{{27}} \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion