If x = 3t, y = $$\frac{1}{2}$$(t + 1), then the value of t for which x = 2y is?
A. 1
B. $$\frac{1}{2}$$
C. -1
D. $$\frac{2}{3}$$
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & x = 3t\,......(i) \cr & y = \frac{1}{2}\left( {t + 1} \right) \cr & x = 2y \cr & \Rightarrow x = 2 \times \frac{1}{2}\left( {t + 1} \right) \cr & \Rightarrow x = t + 1\,......(ii) \cr & \therefore 3t = t + 1 \cr & \left( {{\text{From equation (i) and (ii)}}} \right) \cr & \Rightarrow 2t = 1 \cr & \Rightarrow t = \frac{1}{2} \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion