Examveda

If x = 999, y = 1000, z = 1001 then the value of $$\frac{{{x^3} + {y^3} + {z^3} - 3xyz}}{{x - y + z}}$$     is?

A. 1000

B. 9000

C. 1

D. 9

Answer: Option D

Solution (By Examveda Team)

$$\eqalign{ & \therefore {a^3} + {b^3} + {c^3} - 3abc \cr & = \frac{1}{2}\left( {a + b + c} \right)\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right] \cr & \therefore \frac{{{x^3} + {y^3} + {z^3} - 3xyz}}{{x - y + z}} \cr} $$
$$ = \frac{{\frac{1}{2}\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right]}}{{x - y + z}}$$
$$\eqalign{ & = \frac{{\frac{1}{2}\left( {999 + 1000 + 1001} \right)\left( {1 + 1 + 4} \right)}}{{999 - 1000 + 1001}} \cr & = \frac{{\frac{1}{2} \times 6 \times 3000}}{{1000}} \cr & = 9 \cr} $$

This Question Belongs to Arithmetic Ability >> Algebra

Join The Discussion

Related Questions on Algebra