If x = a - b, y = b - c, z = c - a, then the numerical value of the algebraic expression x3 + y3 + z3 - 3xyz will be?
A. a + b + c
B. 0
C. 4(a + b + c)
D. 3abc
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & x = a - b \cr & y = b - c \cr & z = c - a \cr & \therefore x + y + z \cr & = a - b + b - c + c - a \cr & = 0 \cr & \therefore {x^3} + {y^3} + {z^3} - 3xyz \cr & = \left( {x + y + z} \right)\left( {{\text{ }}{x^2} + {y^2} + {z^2} - xy - zx - yz} \right) \cr & = \left( 0 \right)\left( {{\text{ }}{x^2} + {y^2} + {z^2} - xy - zx - yz} \right) \cr & = 0 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion