If $$x + \frac{1}{x} = \sqrt 3 {\text{,}}$$ then find the value of $${x^3} + \frac{1}{{{x^3}}}$$ = ?
A. -2
B. 0
C. 2
D. 4
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & x + \frac{1}{x} = \sqrt 3 \cr & {\text{Cubing both side}} \cr & \Rightarrow {x^3} + \frac{1}{{{x^3}}} + 3.x.\frac{1}{x}\left( {x + \frac{1}{x}} \right) = 3\sqrt 3 \cr & \Rightarrow {x^3} + \frac{1}{{{x^3}}} + 3\left( {\sqrt 3 } \right) = 3\sqrt 3 \cr & \Rightarrow {x^3} + \frac{1}{{{x^3}}} = 3\sqrt 3 - 3\sqrt 3 \cr & \Rightarrow {x^3} + \frac{1}{{{x^3}}} = 0 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion