Solution (By Examveda Team)
$$\eqalign{
& x + \frac{9}{x} = 6 \cr
& {\text{Take value of x}} \cr
& {\text{Let }}x = 3 \cr
& 3 + \frac{9}{3} = 6{\text{ }}\left( {{\text{Proved}}} \right) \cr
& {\text{So, }}x = 3 \cr
& \therefore {x^2} + \frac{9}{{{x^2}}} \cr
& = 9 + \frac{9}{9} \cr
& = 10 \cr
& \cr
& {\bf{Alternate:}} \cr
& x + \frac{9}{x} = 6 \cr
& {\text{On squaring,}} \cr
& \Rightarrow {\left( {x + \frac{9}{x}} \right)^2} = 36 \cr
& \Rightarrow {x^2} + \frac{{81}}{{{x^2}}} + 2 \times x \times \frac{9}{x} = 36 \cr
& \Rightarrow {x^2} + \frac{{81}}{{{x^2}}} - 18 = 0 \cr
& \Rightarrow {\left( {x - \frac{9}{x}} \right)^2} = 0 \cr
& \Rightarrow x = \frac{9}{x} \cr
& \Rightarrow {x^2} = 9 \cr
& {\text{Hence, }}\left( {{x^2} + \frac{9}{{{x^2}}}} \right) \cr
& = \left( {9 + \frac{9}{9}} \right) \cr
& = 10 \cr} $$
Join The Discussion