If $$x = \frac{{\sqrt 3 }}{2}{\text{,}}$$ then the value of $$\left( {\frac{{\sqrt {1 + x} + \sqrt {1 - x} }}{{\sqrt {1 + x} - \sqrt {1 - x} }}} \right)\,{\text{is}} = ?$$
A. $$ - \sqrt 3 $$
B. -1
C. 1
D. $$\sqrt 3 $$
Answer: Option D
A. $$ - \sqrt 3 $$
B. -1
C. 1
D. $$\sqrt 3 $$
Answer: Option D
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$
Join The Discussion