If $$x + \frac{1}{{9x}} = 4{\text{,}}$$ then $${\text{9}}{x^2} + \frac{1}{{9{x^2}}}$$ is?
A. 140
B. 142
C. 144
D. 146
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & {\text{ }}x + \frac{1}{{9x}} = 4 \cr & {\text{Multiply by 3 both side}} \cr & \Rightarrow {\text{3}}x + \frac{1}{{3x}} = 12 \cr & {\text{Squaring both sides}} \cr & \Rightarrow {\text{9}}{x^2} + \frac{1}{{9{x^2}}} + 2 \times 3x \times \frac{1}{{3x}} = 144 \cr & \Rightarrow {\text{9}}{x^2} + \frac{1}{{9{x^2}}} + 2 = 144 \cr & \Rightarrow {\text{9}}{x^2} + \frac{1}{{9{x^2}}} = 142 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion