Examveda

If $$x + \frac{1}{x} = 5{\text{,}}$$   then $${x^6}{\text{ + }}\frac{1}{{{x^6}}}$$   is?

A. 12098

B. 12048

C. 14062

D. 12092

Answer: Option A

Solution (By Examveda Team)

$$\eqalign{ & {\text{ }}x + \frac{1}{x} = 5 \cr & {\text{Take cube on both sides}} \cr & \Rightarrow {\left( {x + \frac{1}{x}} \right)^3} = {\left( 5 \right)^3} \cr & \Rightarrow {x^3}{\text{ + }}\frac{1}{{{x^3}}} + 3 \times 5 = 125 \cr & \Rightarrow {x^3}{\text{ + }}\frac{1}{{{x^3}}} = 110 \cr & \therefore {\text{Squaring both sides}} \cr & \Rightarrow {\left( {{x^3}{\text{ + }}\frac{1}{{{x^3}}}} \right)^2} = {\left( {110} \right)^2} \cr & \Rightarrow {x^6}{\text{ + }}\frac{1}{{{x^6}}} + 2 = 12100 \cr & \Rightarrow {x^6}{\text{ + }}\frac{1}{{{x^6}}} = 12100 - 2 \cr & \Rightarrow {x^6}{\text{ + }}\frac{1}{{{x^6}}} = 12098 \cr} $$

This Question Belongs to Arithmetic Ability >> Algebra

Join The Discussion

Related Questions on Algebra