If X is a continuous random variable whose probability density function is given by
\[{\text{f}}\left( {\text{x}} \right) = \left\{ {\begin{array}{*{20}{c}}
{{\text{K}}\left( {5{\text{x}} - 2{{\text{x}}^2}} \right)}&{0 \leqslant {\text{x}} \leqslant 2} \\
0&{{\text{otherwise}}}
\end{array}} \right.\]
then P(x > 1) is
A. $$\frac{3}{{14}}$$
B. $$\frac{4}{5}$$
C. $$\frac{{14}}{{17}}$$
D. $$\frac{{17}}{{28}}$$
Answer: Option D
Related Questions on Probability and Statistics
A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?
A. $$\frac{1}{4}$$
B. $$\frac{3}{8}$$
C. $$\frac{1}{2}$$
D. $$\frac{3}{4}$$
A. 1 and $$\frac{1}{3}$$
B. $$\frac{1}{3}$$ and 1
C. 1 and $$\frac{4}{3}$$
D. $$\frac{1}{3}$$ and $$\frac{4}{3}$$
A. E(XY) = E(X) E(Y)
B. Cov (X, Y) = 0
C. Var (X + Y) = Var (X) + Var (Y)
D. E(X2Y2) = (E(X))2 (E(Y))2

Join The Discussion