Examveda

If {x} is a continuous, real valued random variable defined over the interval (-$$\infty $$, +$$\infty $$) and its occurrence is defined by the density function given as:
$${\text{f}}\left( {\text{x}} \right) = \frac{1}{{\sqrt {2\pi } * {\text{b}}}}{{\text{e}}^{\frac{{ - 1}}{2}{{\left( {\frac{{{\text{x}} - {\text{a}}}}{{\text{b}}}} \right)}^2}}}$$     where 'a' and 'b' are the statistical attributes of the random variable {x}. The value of the integral $$\int_{ - \infty }^{\text{a}} {\frac{1}{{\sqrt {2\pi } * {\text{b}}}}{{\text{e}}^{\frac{{ - 1}}{2}{{\left( {\frac{{{\text{x}} - {\text{a}}}}{{\text{b}}}} \right)}^2}}}{\text{dx}}} $$

A. 1

B. 0.5

C. $$\pi $$

D. $$\frac{\pi }{2}$$

Answer: Option B


This Question Belongs to Engineering Maths >> Probability And Statistics

Join The Discussion

Related Questions on Probability and Statistics