If {x} is a continuous, real valued random variable defined over the interval (-$$\infty $$, +$$\infty $$) and its occurrence is defined by the density function given as:
$${\text{f}}\left( {\text{x}} \right) = \frac{1}{{\sqrt {2\pi } * {\text{b}}}}{{\text{e}}^{\frac{{ - 1}}{2}{{\left( {\frac{{{\text{x}} - {\text{a}}}}{{\text{b}}}} \right)}^2}}}$$ where 'a' and 'b' are the statistical attributes of the random variable {x}. The value of the integral $$\int_{ - \infty }^{\text{a}} {\frac{1}{{\sqrt {2\pi } * {\text{b}}}}{{\text{e}}^{\frac{{ - 1}}{2}{{\left( {\frac{{{\text{x}} - {\text{a}}}}{{\text{b}}}} \right)}^2}}}{\text{dx}}} $$
A. 1
B. 0.5
C. $$\pi $$
D. $$\frac{\pi }{2}$$
Answer: Option B
Related Questions on Probability and Statistics
A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?
A. $$\frac{1}{4}$$
B. $$\frac{3}{8}$$
C. $$\frac{1}{2}$$
D. $$\frac{3}{4}$$
A. 1 and $$\frac{1}{3}$$
B. $$\frac{1}{3}$$ and 1
C. 1 and $$\frac{4}{3}$$
D. $$\frac{1}{3}$$ and $$\frac{4}{3}$$
A. E(XY) = E(X) E(Y)
B. Cov (X, Y) = 0
C. Var (X + Y) = Var (X) + Var (Y)
D. E(X2Y2) = (E(X))2 (E(Y))2

Join The Discussion