If X is a discrete random variable that follows Binomial distribution, then which one of the following response relations is correct?
A. $${\text{P}}\left( {{\text{r}} + 1} \right) = \frac{{{\text{n}} - {\text{r}}}}{{{\text{r}} + 1}}{\text{P}}\left( {\text{r}} \right)$$
B. $${\text{P}}\left( {{\text{r}} + 1} \right) = \frac{{\text{p}}}{{\text{q}}}{\text{P}}\left( {\text{r}} \right)$$
C. $${\text{P}}\left( {{\text{r}} + 1} \right) = \frac{{{\text{n}} + {\text{r}}}}{{{\text{r}} + 1}}\frac{{\text{p}}}{{\text{q}}}{\text{P}}\left( {\text{r}} \right)$$
D. $${\text{P}}\left( {{\text{r}} + 1} \right) = \frac{{{\text{n}} - {\text{r}}}}{{{\text{r}} + 1}}\frac{{\text{p}}}{{\text{q}}}{\text{P}}\left( {\text{r}} \right)$$
Answer: Option D
A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?
A. $$\frac{1}{4}$$
B. $$\frac{3}{8}$$
C. $$\frac{1}{2}$$
D. $$\frac{3}{4}$$
A. 1 and $$\frac{1}{3}$$
B. $$\frac{1}{3}$$ and 1
C. 1 and $$\frac{4}{3}$$
D. $$\frac{1}{3}$$ and $$\frac{4}{3}$$
A. E(XY) = E(X) E(Y)
B. Cov (X, Y) = 0
C. Var (X + Y) = Var (X) + Var (Y)
D. E(X2Y2) = (E(X))2 (E(Y))2

Join The Discussion