If $$x \ne 0,$$ $$y \ne 0$$ and $$z \ne 0$$ and $$\frac{1}{{{x^2}}}$$ + $$\frac{1}{{{y^2}}}$$ + $$\frac{1}{{{z^2}}}$$ = $$\frac{1}{{xy}}$$ + $$\frac{1}{{yz}}$$ + $$\frac{1}{{zx}}$$ then the relation among x, y, z is?
A. x + y + y = 0
B. x + y = z
C. $$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$$
D. x = y = z
Answer: Option D
Solution (By Examveda Team)
$$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} = \frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{zx}}$$Go through option D take x = y = z
$$\eqalign{ & \frac{1}{{{x^2}}} + \frac{1}{{{x^2}}} + \frac{1}{{{x^2}}} = \frac{1}{{x^2}} + \frac{1}{{x^2}} + \frac{1}{{x^2}} \cr & \therefore {\text{Option 'D' is right}} \cr} $$
Join The Discussion