If x2 - 3x + 1 = 0, then the value of $$\frac{{{x^6} + {x^4} + {x^2} + 1}}{{{x^3}}}$$ will be?
A. 18
B. 15
C. 21
D. 30
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & {x^2} - 3x + 1 = 0 \cr & \Rightarrow {x^2} + 1 = 3x \cr & \Rightarrow x + \frac{1}{x} = 3 \cr & \Rightarrow {x^3} + \frac{1}{{{x^3}}} + 3 \times 3 = 27 \cr & \Rightarrow {x^3} + \frac{1}{{{x^3}}} = 18 \cr & \therefore \frac{{{x^6} + {x^4} + {x^2} + 1}}{{{x^3}}}{\text{ }} \cr & = \frac{{{x^6}}}{{{x^3}}} + \frac{{{x^4}}}{{{x^3}}} + \frac{{{x^2}}}{{{x^3}}} + \frac{1}{{{x^3}}} \cr & = {x^3} + \frac{1}{{{x^3}}} + \frac{1}{x} + x \cr & = 18 + 3 \cr & = 21 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion