If $${x^2} + 5x + 6 = 0{\text{,}}$$ then the value of $$\frac{{2x}}{{{x^2} - 7x + 6}}$$ is?
A. $$\frac{1}{6}$$
B. $$\frac{1}{3}$$
C. $$ - \frac{1}{6}$$
D. $$ - \frac{1}{3}$$
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & {\text{If }}{x^2} + 5x + 6 = 0 \cr & {\text{then, }}{x^2} + 6 = - 5x \cr & {\text{So,}}\frac{{2x}}{{{x^2} + 6 - 7x}} \cr & = \frac{{2x}}{{ - 5x - 7x}} \cr & = \frac{{2x}}{{ - 12x}} \cr & = - \frac{1}{6}{\text{ }} \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion