If $${x^2} + \frac{1}{5}x + {a^2}$$ is a perfect square, then a is?
A. $$\frac{1}{{100}}$$
B. $$ \pm \frac{1}{{10}}$$
C. $$\frac{1}{{10}}$$
D. $$ - \frac{1}{{10}}$$
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & {x^2} + \frac{1}{5}x + {a^2} \cr & {{\text{A}}^2} + {\text{2}} \times {\text{AB}} + {{\text{B}}^2} = {\left( {{\text{A}} + {\text{B}}} \right)^2} \cr & {x^2} + 2 \times \frac{1}{{10}} \times x + {a^2} = {\left( {x + \frac{1}{{10}}} \right)^2} \cr & {\text{A}} = x \cr & {\text{B}} = \frac{1}{{10}} \cr & {\text{B}} = a = \frac{1}{{10}} \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion