If $${x^4} + \frac{1}{{{x^4}}} = 14159,$$ then the value of $$x + \frac{1}{x}$$ is:
A. 9
B. 12
C. 10
D. 11
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & {x^4} + \frac{1}{{{x^4}}} = 14159 \cr & {x^2} + \frac{1}{{{x^2}}} = \sqrt {14159 + 2} \cr & {x^2} + \frac{1}{{{x^2}}} = 119 \cr & x + \frac{1}{x} = \sqrt {119 + 2} \cr & x + \frac{1}{x} = 11 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion