If $$\frac{{{x^8} + 1}}{{{x^4}}} = 14,$$ then the value of $$\frac{{{x^{12}} + 1}}{{{x^6}}}$$ is:
A. 16
B. 14
C. 52
D. 64
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & \frac{{{x^8} + 1}}{{{x^4}}} = 14 \cr & {x^4} + \frac{1}{{{x^4}}} = 14 \cr & {x^2} + \frac{1}{{{x^2}}} = 4 \cr & {x^6} + \frac{1}{{{x^6}}} = {4^3} - 3 \times 4 \cr & {x^6} + \frac{1}{{{x^6}}} = 64 - 12 \cr & \frac{{{x^{12}} + 1}}{{{x^6}}} = 52 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion