Examveda

If $$\frac{{\left( {x - \sqrt {24} } \right)\left( {\sqrt {75} + \sqrt {50} } \right)}}{{\sqrt {75} - \sqrt {50} }} = 1,$$      then the value of x is.

A. √5

B. 5

C. 2√5

D. 3√5

Answer: Option B

Solution (By Examveda Team)

$$\eqalign{ & \frac{{\left( {x - \sqrt {24} } \right)\left( {\sqrt {75} + \sqrt {50} } \right)}}{{\sqrt {75} - \sqrt {50} }} = 1 \cr & \Rightarrow \left( {x - \sqrt {24} } \right) = \frac{{\sqrt {75} - \sqrt {50} }}{{\sqrt {75} + \sqrt {50} }} \times \frac{{\sqrt {75} - \sqrt {50} }}{{\sqrt {75} - \sqrt {50} }} \cr & \Rightarrow \left( {x - \sqrt {24} } \right) = \frac{{{{\left( {\sqrt {75} - \sqrt {50} } \right)}^2}}}{{75 - 50}} \cr & \Rightarrow \left( {x - \sqrt {24} } \right) = \frac{{75 + 50 - 2\sqrt {75} \sqrt {50} }}{{25}} \cr & \Rightarrow \left( {x - \sqrt {24} } \right) = \frac{{125 - 2 \times 5\sqrt 3 \times 5\sqrt 2 }}{{25}} \cr & \Rightarrow \left( {x - \sqrt {24} } \right) = \frac{{125 - 50\sqrt 6 }}{{25}} \cr & \Rightarrow \left( {x - \sqrt {24} } \right) = \frac{{25\left( {5 - 2\sqrt 6 } \right)}}{{25}} \cr & \Rightarrow x - 2\sqrt 6 = 5 - 2\sqrt 6 \cr & \Rightarrow x = 5 \cr} $$

This Question Belongs to Arithmetic Ability >> Surds And Indices

Join The Discussion

Related Questions on Surds and Indices