If $$x + \sqrt 5 = 5 + \sqrt y $$ and x, y are positive integers, then the value of $$\frac{{\sqrt x + y}}{{x + \sqrt y }}$$ is?
A. 1
B. 2
C. 5
D. 7
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & x + \sqrt 5 = 5 + \sqrt y \cr & {\text{Put , }}x = 5{\text{ and }}y = 5 \cr & 5 + \sqrt 5 = 5 + \sqrt 5 \cr & {\text{L}}{\text{.H}}{\text{.S}} = {\text{R}}{\text{.H}}{\text{.S}} \cr & \frac{{\sqrt x + y}}{{x + \sqrt y }} \cr & = \frac{{\sqrt 5 + 5}}{{5 + \sqrt 5 }} \cr & = 1 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion