If $$x = \sqrt {a\root 3 \of {b\sqrt {a\root 3 \of b } } } \,.....\,\infty ,$$ then the value of x is:
A. $$\root 5 \of {a{b^3}} $$
B. $$\root 3 \of {{a^5}b} $$
C. $$\root 3 \of {{a^3}b} $$
D. $$\root 5 \of {{a^3}b} $$
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & {\text{Given}} \cr & x = \sqrt {a\root 3 \of {b\sqrt {a\root 3 \of b } } } \,.....\,\infty \,.\,.\,.\,.\,.\,.\,\left( {\text{i}} \right) \cr & {\text{On squaring both sides}} \cr & \Rightarrow {x^2} = a\root 3 \of {b\sqrt {a\root 3 \of b } } \,.....\,\infty \cr & {\text{On cubing both sides}} \cr & \Rightarrow {x^6} = {a^3}b\,\sqrt {a\root 3 \of {b\sqrt {a\root 3 \of b } } } \,.....\,\infty \cr & \Rightarrow {x^6} = {a^3}b\,x{\text{ from equation }}\left( {\text{i}} \right) \cr & {\text{On dividing above equation by }}x{\text{ we get}} \cr & \Rightarrow \frac{{{x^6}}}{x} = \frac{{{a^3}bx}}{x} \cr & \Rightarrow {x^5} = {a^3}b \cr & \Rightarrow x = \root 5 \of {{a^3}b} \cr} $$Related Questions on Surds and Indices
A. $$\frac{1}{2}$$
B. 1
C. 2
D. $$\frac{7}{2}$$
Given that 100.48 = x, 100.70 = y and xz = y2, then the value of z is close to:
A. 1.45
B. 1.88
C. 2.9
D. 3.7

Join The Discussion