If x = 5, then the value of the expression $${x^2} - 2 + \frac{1}{{{x^2}}}$$ is?
A. $$\frac{{576}}{{25}}$$
B. $$\frac{{24}}{{25}}$$
C. $$\frac{{24}}{5}$$
D. $$\frac{{625}}{{24}}$$
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & {\text{According to the question,}} \cr & {\text{If }}x = 5 \cr & \therefore {x^2} - 2 + \frac{1}{{{x^2}}} \cr & = {\left( {x - \frac{1}{x}} \right)^2} \cr & = {\left( {5 - \frac{1}{5}} \right)^2} \cr & = {\left( {\frac{{24}}{5}} \right)^2} \cr & = \frac{{576}}{{25}} \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion