If x = z = 225 and y = 226, then the value of x3 + y3 + z3 - 3xyz = ?
A. 765
B. 676
C. 674
D. 576
Answer: Option B
Solution (By Examveda Team)
According to the question,$$\because $$ x = z = 225
y = 226
⇒ x3 + y3 + z3 - 3xyz = ?
As we know,
x3 + y3 + z3 - 3xyz
= $$\frac{1}{2}$$ (x + y + z) [(x - y)2 + (y - z)2 + (z - x)2]
= $$\frac{1}{2}$$ [225 + 225 + 226] [(225 - 226)2 + (226 - 225)2 + (225 - 225)2]
= $$\frac{676}{2}$$ × [1 + 1 + 0]
= 676
Join The Discussion