Solution (By Examveda Team)
$$\eqalign{
& {x^3} - 4{x^2} + 19 = 6\left( {x - 1} \right)......\left( 1 \right)\left( {{\text{Given}}} \right) \cr
& \& \,\left( {{x^2} + \frac{1}{{x - 4}}} \right) = ?\left( {{\text{To find}}} \right) \cr
& \to \frac{{{x^2}\left( {x - 4} \right) + 1}}{{x - 4}}......\left( 2 \right) \cr
& {\text{from equation}}\left( 1 \right) \cr
& {x^3} - 4{x^2} + 19 = 6x - 6 \cr
& {x^3} - 4{x^2} + 1 + 18 = 6x - 6 \cr
& {x^3} - 4{x^2} + 1 = 6x - 6 - 18 \cr
& {x^3} - 4{x^2} + 1 = 6x - 24 \cr
& {\text{putting the value of }}\left( {{x^3} - 4{x^2} + 1} \right){\text{in equation }}\left( 2 \right) \cr
& {\text{we get,}} = \frac{{6x - 24}}{{x - 4}} = \frac{{6\left( {x - 4} \right)}}{{\left( {x - 4} \right)}} = 6 \cr} $$
Join The Discussion