If x4 - 6x2 - 1 = 0, then the value of $${x^6} - 5{x^2} + \frac{5}{{{x^2}}} - \frac{1}{{{x^6}}} + 5$$ is:
A. 219
B. 209
C. 204
D. 239
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & {x^4} - 6{x^2} - 1 = 0, \cr & {x^2}\left( {{x^2} - 6 - \frac{1}{{{x^2}}}} \right) = 0 \cr & {x^2} - \frac{1}{{{x^2}}} = 6 \cr & {x^6} - \frac{1}{{{x^6}}} = 216 + 18 = 234 \cr & {x^6} - \frac{1}{{{x^6}}} - 5\left( {{x^2} - \frac{1}{{{x^2}}}} \right) + 5 \cr & = 234 - 30 + 5 \cr & = 209 \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion