Examveda

If x(x - 3) = -1, then the value of x3(x3 - 18) is?

A. -1

B. 2

C. 1

D. 0

Answer: Option A

Solution (By Examveda Team)

$$\eqalign{ & x\left( {x - 3} \right) = - 1 \cr & \Rightarrow \left( {x - 3} \right) = \frac{{ - 1}}{x} \cr & {\text{Taking cube on both sides}} \cr & \Rightarrow {\left( {x - 3} \right)^3} = {\left( {\frac{{ - 1}}{x}} \right)^3} \cr & \Rightarrow {x^3} - 27 - 9.x.\left( {x - 3} \right) = \frac{{ - 1}}{{{x^3}}} \cr & \Rightarrow {x^3} - 27 - 9 \times - 1 = \frac{{ - 1}}{{{x^3}}} \cr & \Rightarrow {x^3} - 27 + 9 = \frac{{ - 1}}{{{x^3}}} \cr & \Rightarrow {x^3} - 18 = \frac{{ - 1}}{{{x^3}}} \cr & \Rightarrow {x^3}\left( {{x^3} - 18} \right) = - 1 \cr} $$

This Question Belongs to Arithmetic Ability >> Algebra

Join The Discussion

Related Questions on Algebra