If $$y = \frac{{2 - x}}{{1 + x}},$$ then what is the value of $$\frac{1}{{y + 1}} + \frac{{2y + 1}}{{{y^2} - 1}}?$$
A. $$\frac{{\left( {1 + x} \right)\left( {2 - x} \right)}}{{2x - 1}}$$
B. $$\frac{{\left( {1 - x} \right)\left( {2 + x} \right)}}{{x - 1}}$$
C. $$\frac{{\left( {1 + x} \right)\left( {2 - x} \right)}}{{1 - 2x}}$$
D. $$\frac{{\left( {1 + x} \right)\left( {2 - x} \right)}}{{1 - x}}$$
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & \frac{1}{{y + 1}} + \frac{{2y + 1}}{{{y^2} - 1}} \cr & = \frac{{y - 1 + 2y + 1}}{{{y^2} - 1}} \cr & = \frac{{3y}}{{{y^2} - 1}} \cr & = \frac{{3\left( {\frac{{2 - x}}{{1 + x}}} \right)}}{{{{\left( {\frac{{2 - x}}{{1 + x}}} \right)}^2} - 1}} \cr & = \frac{{3\left( {2 - x} \right) \times \left( {1 + x} \right)}}{{4 + {x^2} - 4x - 1 - {x^2} - 2x}} \cr & = \frac{{3\left( {2 - x} \right) \times \left( {1 + x} \right)}}{{ - 6x + 3}} \cr & = \frac{{3\left( {2 - x} \right) \times \left( {1 + x} \right)}}{{3\left( {1 - 2x} \right)}} \cr & = \frac{{\left( {2 - x} \right)\left( {1 + x} \right)}}{{\left( {1 - 2x} \right)}} \cr & \cr & {\bf{Alternate}}\,{\bf{solution:}} \cr & y = \frac{{2 - x}}{{1 + x}} \cr & {\text{Put }}x = 0, \cr & y = 2 \cr & \frac{1}{{y + 1}} + \frac{{2y + 1}}{{{y^2} - 1}} \cr & = \frac{1}{3} + \frac{5}{3} \cr & = \frac{6}{3} \cr & = 2 \cr & {\text{Go through option}} \cr & \frac{{\left( {1 + x} \right)\left( {2 - x} \right)}}{{\left( {1 - 2x} \right)}} \cr & = \frac{{1 \times 2}}{1} \cr & = 2 \cr} $$Related Questions on Surds and Indices
A. $$\frac{1}{2}$$
B. 1
C. 2
D. $$\frac{7}{2}$$
Given that 100.48 = x, 100.70 = y and xz = y2, then the value of z is close to:
A. 1.45
B. 1.88
C. 2.9
D. 3.7

Join The Discussion