If x : y = 4 : 15 then the value of $$\left( {\frac{{x - y}}{{x + y}}} \right)$$ is?
A. $$\frac{{11}}{{19}}$$
B. $$\frac{{19}}{{11}}$$
C. $$\frac{4}{{11}}$$
D. $$\frac{{15}}{{19}}$$
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & y:x = 4:15 \cr & \therefore \frac{y}{x} = \frac{4}{{15}} \cr & \therefore \frac{{x - y}}{{x + y}} \cr & \Rightarrow \frac{{x\left( {1 - \frac{y}{x}} \right)}}{{x\left( {1 + \frac{y}{x}} \right)}} \cr & {\text{Taking }}x{\text{ common}} \cr & \Rightarrow \frac{{1 - \frac{4}{{15}}}}{{1 + \frac{4}{{15}}}} \cr & \Rightarrow \frac{{11}}{{15}} \times \frac{{15}}{{19}} \cr & \Rightarrow \frac{{11}}{{19}} \cr} $$Related Questions on Algebra
A. $$1 + \frac{1}{{x + 4}}$$
B. x + 4
C. $$\frac{1}{x}$$
D. $$\frac{{x + 4}}{x}$$
A. $$\frac{{20}}{{27}}$$
B. $$\frac{{27}}{{20}}$$
C. $$\frac{6}{8}$$
D. $$\frac{8}{6}$$

Join The Discussion