If θ is acute angle and sin(θ + 18°) = $$\frac{1}{2}$$, then the value of θ in circular measure is:
A. $$\frac{\pi }{{12}}$$ Radians
B. $$\frac{\pi }{{15}}$$ Radians
C. $$\frac{{2\pi }}{5}$$ Radians
D. $$\frac{{3\pi }}{{13}}$$ Radians
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & \sin \left( {\theta + 18} \right) = \frac{1}{2} \cr & \sin \left( {\theta + 18} \right) = \sin 30 \cr & \theta + 18 = 30 \cr & \therefore \theta = 12 \cr & {\text{We know that}} \cr & {180^ \circ } = \pi \cr & {12^ \circ } = \frac{\pi }{{180}} \times 12 = \frac{\pi }{{15}} \cr} $$Related Questions on Circular Measurement of Angle
If 0 ≤ θ ≤ $$\frac{\pi }{2}$$ and sec2θ + tan2θ = 7, then θ is
A. $$\frac{{5\pi }}{{12}}$$ radian
B. $$\frac{\pi }{3}$$ radian
C. $$\frac{\pi }{6}$$ radian
D. $$\frac{\pi }{2}$$ radian

Join The Discussion