In a circle with centre O, AD is a diameter and AC is a chord. Point B is on AC such that OB = 7 cm and ∠OBA = 60°. If ∠DOC = 60°, then what is the length of BC?
A. 3√7 cm
B. 5√7 cm
C. 7 cm
D. 3.5 cm
Answer: Option C
Solution (By Examveda Team)

$$\eqalign{ & OB = 7\,{\text{cm}} \cr & {\text{Sine Rule in }}\Delta BOC \cr & \frac{{OB}}{{\sin {{30}^ \circ }}} = \frac{{BC}}{{\sin {{30}^ \circ }}} \cr & BC = 7\,{\text{cm}} \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion