In a cubic system with cell edge a, two phonons with wave vectors $${\overrightarrow {\bf{q}} _1}$$ and $${\overrightarrow {\bf{q}} _2}$$ collide and produce a third phonon with a wave. vector $${\overrightarrow {\bf{q}} _3}$$ such that $${\overrightarrow {\bf{q}} _1} + {\overrightarrow {\bf{q}} _2} = {\overrightarrow {\bf{q}} _3} + \overrightarrow {\bf{R}} $$ where, $$\overrightarrow {\bf{R}} $$ is a lattice vector. Such a collision process will lead to (a)
A. finite thermal resistance
B. zero thermal resistance
C. an infinite thermal resistance
D. a finite thermal resistance for certain $$\left| {\overrightarrow {\bf{R}} } \right|$$ only
Answer: Option A
The valence electrons do not directly determine the following property of a metal
A. electrical conductivity
B. thermal conductivity
C. shear modulus
D. metallic lustre
A. $${\left( {\frac{{2Q}}{P}} \right)^{ - 6}}$$
B. $${\left( {\frac{Q}{P}} \right)^{ - 6}}$$
C. $${\left( {\frac{P}{{2Q}}} \right)^{ - 6}}$$
D. $${\left( {\frac{P}{Q}} \right)^{ - 6}}$$
A. $$N\mu \coth \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
B. $$N\mu \tanh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
C. $$N\mu \sinh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
D. $$N\mu \cosh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
A. $$\sqrt {2C\left( {\frac{1}{{{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$
B. $$\sqrt {C\left( {\frac{1}{{2{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$
C. $$\sqrt {C\left( {\frac{1}{{{M_1}}} + \frac{1}{{2{M_2}}}} \right)} $$
D. zero
Join The Discussion