In a group of 6 boys and 4 girls, four children are to be selected. In how many different ways can they be selected such that at least one boy should be there?
A. 159
B. 194
C. 205
D. 209
E. None of these
Answer: Option D
Solution (By Examveda Team)
We may have (1 boy and 3 girls) or (2 boys and 2 girls) or (3 boys and 1 girl) or (4 boys).∴ Required number of ways
$$ = \left( {^6{C_1}{ \times ^4}{C_3}} \right) + \left( {^6{C_2}{ \times ^4}{C_2}} \right) + $$ $$\left( {^6{C_3}{ \times ^4}{C_1}} \right) + $$ $$\left( {^6{C_4}} \right)$$
$$ = \left( {^6{C_1}{ \times ^4}{C_1}} \right) + \left( {^6{C_2}{ \times ^4}{C_2}} \right) + $$ $$\left( {^6{C_3}{ \times ^4}{C_1}} \right) + $$ $$\left( {^6{C_2}} \right)$$
$$ = \left( {6 \times 4} \right) + \left( {\frac{{6 \times 5}}{{2 \times 1}} \times \frac{{4 \times 3}}{{2 \times 1}}} \right) + $$ $$\left( {\frac{{6 \times 5 \times 4}}{{3 \times 2 \times 1}} \times 4} \right) + $$ $$\left( {\frac{{6 \times 5}}{{2 \times 1}}} \right)$$
$$\eqalign{ & = \left( {24 + 90 + 80 + 15} \right) \cr & = 209 \cr} $$
There is one easier way to do this. Logic is one boy must be there. hence if we take all possibilities minus 0 boy there idea into consideration,it'll be far easier to calculate.
6 boys + 4 girls= 10 children,among which 4 are selected - 0 boys & 4 girls
10c4 - 4c4
=210-1
=209
there