Examveda
Examveda

In a non-conducting medium characterized by ε = ε0, μ = μ0 and conductivity σ = 0, the electric field (in V/m) is given by $$\overrightarrow {\bf{E}} = 20\sin \left[ {{{10}^8}t - kz} \right]{\bf{\hat j}}.$$     The magnetic field $$\overrightarrow {\bf{H}} $$ (in A/m), is given by

A. $$20k\cos \left[ {{{10}^8}t - kz} \right]{\bf{\hat j}}$$

B. $$\frac{{20k}}{{{{10}^8}{\mu _0}}}\sin \left[ {{{10}^8}t - kz} \right]{\bf{\hat j}}$$

C. $$ - \frac{{20k}}{{{{10}^8}{\mu _0}}}\sin \left[ {{{10}^8}t - kz} \right]{\bf{\hat i}}$$

D. $$ - 20k\cos \left[ {{{10}^8}t - kz} \right]{\bf{\hat j}}$$

Answer: Option C


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$