In a right triangle ABC, right angled at B, altitude BD is drawn to the hypotenuse AC of the triangle. If AD = 6 cm, CD = 5 cm, then find the value of AB2 + BD2 (in cm).
A. 30
B. 96
C. 36
D. 66
Answer: Option B
Solution (By Examveda Team)

Since, AB2 = AD × AC
AB2 = 6 × 11 = 66 cm
And, BD2 = AD × DC = 6 × 5 = 30
∴ AB2 + BD2 = 66 + 30 = 96
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion